
AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

 

V1.02, released March 2020                                                                                                             Page 1 of 49 

 

 

 

 

 

 

 

 

 

 

 

 

Certified Practitioner in Agile Testing (CPAT) 

Syllabus 

 

 

Version: 1.02 

Released: March2020 

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 2 of 49 

Copyright Notice 
 
This document may be copied in its entirety, or extracts made, if the source is acknowledged. 
 
All CPAT syllabus and linked documents (including this document) are copyright of Agile United 
(hereafter referred to as AU). 
 
The material authors and international contributing experts involved in the creation of the CPAT 
resources hereby transfer the copyright to AU. The material authors, international contributing 
experts and AU have agreed to the following conditions of use: 

¶ Any individual or training company may use this syllabus as the basis for a training course if 
AU and the authors are acknowledged as the copyright owner and the source respectively of 
the syllabus, and they have been officially recognized by AU. More regarding recognition is 
available via: https://www.agile-united.com/recognition 

¶ Any individual or group of individuals may use this syllabus as the basis for articles, books, or 
other derivative writings if AU and the material authors are acknowledged as the copyright 
owner and the source respectively of the syllabus. 

 

Thank you to the main authors 
¶ Bas Kruip, Joost Voskuil, Klaartje van Zwoll, Jeroen van Seeters, Huib Schoots 

 

Thank you to the co-authors 
¶ Carlo van Driel, Jayapradeep Jiothis 

 

Thank you to the review committee 
Alexis Herrera, Alfonso Fernández, Ana Laura Ochoa Moreno, Arun Janglie, Aurelio Gandarillas, Ángel 

Rayo Acevedo, Christine Green, Daniel Castillo Garcia, Daniel Leo Lopez Romero, Dwarakanath Babu 

KLSD, Emilie Potin-Suau, Erik van Veenendaal, Fabiola Mero, Gustavo Márquez Sosa, Héctor 

Ruvalcaba, Isaac Marcelo Malamud Kobrinsky, Ismael Betancourt, Javier Chávez, Javier Jesús 

Gutiérrez Rodríguez, Jordi Fernandez, José Antonio Rodriguez, Julian Baars, Julie Gardiner,Julio 

Córdoba Retana, Jochem Gross, Kaan Sanli, Kyle Alexander Siemens, Laksh Ranganathan, Luisa 

Morales Gómez-Tejedor, Márcia Araújo Coelho, Marco Fidel Peña Valbuena, Marelis V. Pérez García, 

Mario Alvarez Gómez, Melissa Pontes, Miaomiao Tang, Miguel Angel De León Trejo, Miranda Kerpel, 

Nadia Soledad Cavalleri, Patricia Osorio Aristizabal, Paul Mowat, Richard Seidl, Rik Marselis, Rogier 

Ammerlaan, Ruth Margaret Florian Caipa, Sammy Kolluru, Samuel Ouko, Sebastiaan Vreedenburgh, 

Sergio von Borries, Shashikumar Singh, Silvia Nane, Søren Wassard, Thomas Cagley, Tim Moore, 

Valeria Cocco, Wim Decoutere & Yaara Egger. 

 

Revision History 
Version Date Remarks 

0.16 December 2019 Initial Beta release 

1.00 January 2020 Initial release after reviews 

1.01 January 2020 Small review comments 

1.02 March 2020 Added reference to Davis Hestenes models 
in chapter 2.4 

  

https://www.agile-united.com/recognition


AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 3 of 49 

Table of Content 
Business Outcomes ................................................................................................................................. 5 

Learning Objectives/Cognitive Levels of Knowledge .............................................................................. 5 

Hands-on Objectives ............................................................................................................................... 6 

Prerequisites ............................................................................................................................................ 6 

Chapter 1 - Introduction to Agile Testing ................................................................................................ 7 

1.1 Definition of Testing ...................................................................................................................... 8 

1.2 What is Agile? ................................................................................................................................ 8 

1.3 Link Agile to Testing and Risks ....................................................................................................... 9 

1.4 Definition of Agile Testing ........................................................................................................... 10 

1.5 Scrum ........................................................................................................................................... 11 

1.6 Tester in an Agile context ............................................................................................................ 13 

1.7 Critical thinking ............................................................................................................................ 14 

1.8 Retrospectives ............................................................................................................................. 15 

Chapter 2 ς Start Testing ς A Case ........................................................................................................ 16 

2.1 Test the case software................................................................................................................. 17 

2.2 Questions ..................................................................................................................................... 17 

2.3 Feedback...................................................................................................................................... 18 

2.4 Models ......................................................................................................................................... 18 

2.5 Test strategy global overview ...................................................................................................... 19 

2.6 Project outline ............................................................................................................................. 20 

2.7 Product outline ............................................................................................................................ 21 

Chapter 3 ς Risks ................................................................................................................................... 24 

3.1 Risks ............................................................................................................................................. 24 

3.1 Definition of risk ...................................................................................................................... 24 

3.2 Type and area of risks .............................................................................................................. 25 

3.3 Risk Coverage .......................................................................................................................... 25 

3.4 Oracles ..................................................................................................................................... 26 

3.5 Inside out versus outside in risk analysis ................................................................................. 26 

3.6 Risk analysis: headline game ................................................................................................... 27 

3.7 Risk analysis: riskstorm using Testsphere© ............................................................................. 27 

3.8 Risks in Agile: the continuous risk assessment cycle ............................................................... 28 

Chapter 4 ς User Stories ........................................................................................................................ 30 

4.1 Why do we use user stories? ....................................................................................................... 30 

4.2 The elements of a user story ....................................................................................................... 30 

4.3 Example and challenges .............................................................................................................. 31 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 4 of 49 

4.4 What is an acceptance criterion? ................................................................................................ 31 

4.5 Horror plots ................................................................................................................................. 32 

4.6 Story Splitting .............................................................................................................................. 32 

Chapter 5 ς Test Strategy ...................................................................................................................... 34 

5.1 General overview ........................................................................................................................ 35 

5.2 Behaviour Driven Development .................................................................................................. 37 

5.3 Exploratory Testing ...................................................................................................................... 41 

5.4 Test automation & tools .............................................................................................................. 43 

Chapter 6 ς Test reporting .................................................................................................................... 45 

6.1 The one-page test status overview ............................................................................................. 45 

6.2 The Test Story / Story telling ....................................................................................................... 46 

6.3 Issues and issue management ..................................................................................................... 46 

References ............................................................................................................................................. 48 

General references ............................................................................................................................ 48 

Specific references ............................................................................................................................ 48 

 

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 5 of 49 

Business Outcomes 
Business objects (BOs) are a brief statement of what you are expected to have learned after the 

training. 

BO-1 Understand the principles of Agile and Scrum in general 

BO-2 Understand the principles of Agile and Scrum in relation to testing 

BO-3 Understand the role of a tester in an Agile environment 

BO-4 Have insight into the people skills that are essential to be part of a multi-disciplinary 
team and to collaborate effectively with developers, analysts and product owners 

BO-5 Be able to discuss and practically map risks using multiple techniques 

BO-6 Understand the relation between risks, facts, questions, intuition, exploration and 
testing 

BO-7 Define a test strategy tailored to work in an Agile environment 

BO-8 Practice creating a test strategy for a real product 

BO-9 Understand and use Exploratory Testing to accelerate your testing 

BO-10 Apply Exploratory Testing to real software 

BO-11 Understand and use Test automation in a sustainable way (maintainable and re-usable)  

BO-12 Be able to tell the Testing Story 

BO-13 Be able to do effective reporting about testing to management and other stakeholders 

BO-14 To be able to improve specifications to add more value 

BO-15 Use your critical thinking skills to improve the (quality of) the product and/or processes 

BO-16 Understand and practice feedback scenario´s 

BO-17 Understand learning and the role of retrospectives in learning 

BO-18 Practice learning by applying retrospectives 

Learning Objectives/Cognitive Levels of Knowledge 
Learning objectives (LOs) are brief statements that describe what you are expected to know after 

ǎǘǳŘȅƛƴƎ ŜŀŎƘ ŎƘŀǇǘŜǊΦ ¢ƘŜ [hǎ ŀǊŜ ŘŜŦƛƴŜŘ ōŀǎŜŘ ƻƴ .ƭƻƻƳΩǎ ƳƻŘƛŦƛŜŘ ǘŀȄƻƴƻƳȅ ŀǎ ŦƻƭƭƻǿǎΥ 

Definitions K1 Remembering K2 Understanding K3 Applying 

Bloom´s definition Exhibit memory of 
previously learned 
material by recalling 
facts, terms, basic 
concepts, and 
answers. 

Demonstrate 
understanding of facts 
and ideas by organizing, 
comparing, translating, 
interpreting, giving 
descriptions, and stating 
main ideas. 

Solve problems to new 
situations by applying 
acquired knowledge, 
facts, techniques and 
rules in a different way. 

Verbs (examples) Remember 
Recall 
Choose 
Define 
Find 
Match 
Relate 
Select 

Summarize 
Generalize 
Classify 
Compare 
Contrast 
Demonstrate 
Interpret 
Rephrase 

Implement 
Execute 
Use 
Apply 
Plan 
Select 

 

For more details of BloomΩs taxonomy please, refer to [BT1] and [BT2] in References. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 6 of 49 

Hands-on Objectives 
Hands-on Objectives (HOs) are brief statements that describe what you are expected to perform or 

execute to understand the practical aspect of learning. The HOs are defined as follows: 

¶ HO-0: Live view of an exercise or recorded video. 

¶ HO-1: Guided exercise. The trainees follow the sequence of steps performed by the trainer. 

¶ HO-2: Exercise with hints. Exercise to be solved by the trainee, utilizing hints provided by the 

trainer. 

¶ HO-3: Unguided exercises without hints. 

Prerequisites 
 
Mandatory 

¶ None 

Recommended 

¶ Some Agile or Scrum certificate like PSM or CSM or ASF or at least read the Scrum guide. 

¶ Basic knowledge (ISTQB-CTFL or ISTQB-CFTL-Agile Tester) of testing in general. 

¶ Having at least 1 year working experience in Agile and in testing. 

¶ Read a book about Agile Testing like ´Agile Testing´[JL1] and ´More Agile Testing´[JL1]. 

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 7 of 49 

Chapter 1 - Introduction to Agile Testing 
 

In the introduction, we will define the terminology surrounding testing, risks, Agile, Scrum and Agile 

Testing. 

Keywords 

Testing, Product Risk, Project Risk, Quality Risk, Agile, Manifesto, Known knowns, Unknown knowns, 

Known unknowns, Unknown unknowns, Agile Testing, Scrum 

LO-1.1 K1 Baseline the definition of testing 

LO-1.2 K1 Recall the structure of various risks 

LO-1.3 K1 Recall the Agile Manifesto 

LO-1.4 K2 Explain the meaning of the Agile Manifesto and principles 

LO-1.5 K2 Rephrase the Agile Manifesto into risks, based on RumsfeldΩs άThere are known 
knownsέ 

LO-1.6 K2 Understand and explain the definition of testing and especially Agile Testing 

LO-1.7 K2 Understand the Scrum framework 

HO-1.1 HO-3 Share the current definitions of Scrum among the group 

LO-1.8 K2 Explain the Scrum framework and the role of a tester in the team 

LO-1.9 K1 Recall the roles of Product Owner, Scrum Master and Scrum Team 

LO-1.10 K1 Recall the use of story points and estimation and test points vs. including test 
estimates 

LO-1.11 K2 Explain the testing perspective in planning poker and the test role in sprint 
planning 

LO-1-12 K1 Recall velocity driven and commitment driven planning 

LO-1.13 K2 Understand test estimates 

LO-1.14 K2 Explain the test role in refinement sessions 

LO-1.15 K2 Explain the test role in retrospectives 

LO-1.16 K2 Understand the test role in a Program Increment / Release planning 

LO-1.17 K1 Learn some commonly used Scrum anti-patterns like N+1 test iteration or 
hardening iterations to resolve technical debt 

LO-1.18 K2 Understand the shift of the tester role in an Agile context 

LO-1.19 K2 Be able to explain what the testersΩ role is in an Agile team 

LO-1.20 K2 Understand the role of a tester as the key quality driver in an Agile team 

LO-1.21 K2 Understand the skills that are essential for a tester in an Agile context 

HO-1.2 HO-3 Get the definitions from the students to start a discussion 

LO-1.23 K2 Demonstrate the definition of critical thinking 

LO-1.24 K2 Demonstrate the definition of a claim or assertion 

HO-1.3 HO-1 Practice with the claims, conclusions and constructions to understand the 
complexity 

LO-1.25 K2 Understand and recognize fallacies 

LO-1.26 K2 Understand thinking errors and how they influence people´s judgement 

LO-1.27 K3 Apply all the definitions that play a role in thinking critical 

HO-1.4 HO-2 Practice critical thinking by using argumentation, claims, constructions, fallacies 
and thinking errors 

LO-1.28 K2 Understand the definition of a retrospective 

LO-1.29 K2 Explain the purpose of retrospectives 

LO-1.30 K2 Demonstrate the need of retrospectives and the role of a tester 

LO-1.31 K3 Be able to implement retrospectives in a team 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 8 of 49 

LO-1.32 K1 Be able to select different types of retrospectives 

HO-1.5 HO-3 Define how a serious game can be used for a retrospective 

 

1.1 Definition of Testing 
 

LO-1.1 K1 Baseline the definition of testing 

LO-1.2 K1 Recall the structure of various risks 

 

Testing is giving insights on risks, where risk is any threat to the customer value of the product to be 

delivered. 

The risks can either be product risks that threaten the value of the product or project risks that 

threaten either the speed of delivering the product or in the end the product itself. 

1.2 What is Agile? 
 

LO-1.3 K1 Recall the Agile Manifesto 

LO-1.4 K2 Explain the meaning of the Agile Manifesto and principles 

 

Agile is the ability to create and respond to change. It is a way of dealing with, and ultimately 

succeeding in, an uncertain and turbulent environment [AG1]. 

The Agile manifesto [AM1] consists of 4 values and 12 principles. Explained and discussed are the 4 

values: 

ά²Ŝ ŀǊŜ ǳƴŎƻǾŜǊƛƴƎ ōŜǘǘŜǊ ǿŀȅǎ ƻŦ ŘŜǾŜƭƻǇƛƴƎ ǎƻŦǘǿŀǊŜ ōȅ ŘƻƛƴƎ ƛǘ ŀƴŘ ƘŜƭǇƛƴƎ ƻǘƘŜǊǎ Řƻ ƛǘΦ Through 

ǘƘƛǎ ǿƻǊƪ ǿŜ ƘŀǾŜ ŎƻƳŜ ǘƻ ǾŀƭǳŜέ 

¶ Individuals and Interactions over Processes and Tools 

¶ Working software   over Comprehensive documentation 

¶ Customer collaboration  over Contract negotiation 

¶ Responding to change   over Following a plan 

άThat is, while there is value in the items on the right, we value the items on the left moreέ 
 
Explained and discussed are the 12 principles as they are evenly important to get people to the right 

mindset: 

ά²Ŝ Ŧƻƭƭƻǿ ǘƘŜǎŜ ǇǊƛƴŎƛǇƭŜǎέ 
1. Our highest priority is to satisfy the customer through the early and continuous delivery of 

valuable software. 
2. Welcome changing requirements, even late in development. Agile processes harness change 

for the customerΩs competitive advantage. 
3. Deliver working software frequently, from a couple of weeks to a couple of months, with a 

preference for the shorter timescale. 
4. Business people and developers must work together daily throughout the project. 
5. Build projects around motivated individuals. Give them the environment and support their 

needs and trust them to get the job done. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 9 of 49 

6. The most efficient and effective method of conveying information to and within a 
development team is face-to-face conversation. 

7. A working software is the primary measure of progress. 
8. Agile processes promote sustainable development. The sponsors, developers and users 

should be able to maintain a constant pace indefinitely. 
9. Continuous attention to technical excellence and good design enhances agility. 
10. Simplicity ςthe art of maximizing the amount of work not doneς is essential. 
11. The best architectures, requirements and designs emerge from self-organizing teams. 
12. At regular intervals, the team reflects on how to become more effective, then tunes and 

adjusts its behavior accordingly. 

 

1.3 Link Agile to Testing and Risks 
 

LO-1.5 K2 Rephrase the Agile Manifesto into risks, based on RumsfeldΩs άThere are known 
knownsέ 

 

Rumsfeld stated: ´Reports that say that something hasnΩt happened are always interesting to me, 

because as we know, there are known knowns; there are things we know we know. We also know 

there are known unknowns; that is to say we know there are some things we do not know. But there 

are also unknown unknownsτ the ones we donΩt know we don't know. And if one looks throughout 

the history of our country and other free countries, it is the latter category that tend to be the 

difficult onesΩ [RF1] 

The idea of unknown unknowns was created in 1955 by two American psychologists, Joseph Luft 

(1916-2014) and Harrington Ingham (1916-1995) in their development of the Johari window. They 

used it as a technique to help people better understand their relationship with themselves as well as 

others. 

These ideas are linked to important pillars in Agile Testing: 

¶ Facts 

¶ Questions 

¶ Intuition/The unconscious 

¶ Exploration 
 

 
Figure 1 

What is valid for agile in general is of course also valid for testing. Here too all areas must be covered. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 10 of 49 

Risks are (properties of) 'things' that can present a danger / pose a threat to the value of the 
products to be delivered. A testers job is to identify those dangers and threats. The total field of 
those ´threats´ consists of 4 subcategories.  
These all in a pure sense require a different approach: in a broader sense, those things that we know 
of require CHECKS. Things we don't know about require TESTS. These approaches can again be 
divided into many test approaches / techniques or operational choices. 
 

1.4 Definition of Agile Testing 
 

LO-1.6 K2 Understand and explain the definition of testing and especially Agile Testing 

 

There have been many definitions of Agile Testing (C. Kaner, M. Bolton, J. Bach, L. Crispin, E. 

Hendrickson, J. Gregory and many more) and discussions about these definitions. Most definitions 

are centered around testing or testers as a separate role in developing software. Two very important 

missing elements are added to this definition: the teamΩǎ responsibility in Quality as well as the four 

types of skills (People skills, Agile skills, Test skills, Technology skills) testers should possess. 

The definition consists of 3 parts: why do we do what we do, what do we do and who does it. 

Why: 

¶ Help the client in the process of reviewing his/her product by providing as much insight as 

possible into the workings and the risks involved in the usage of the product. 

¶ Help the team in producing a constantly better product, one that meets the expectations and 

intent of the client. 

What: 

¶ Developing the awareness to quality in the team by actively helping to continiously improve 

quality.  

¶ Performing tests of the criteria that are not clearly established or yet fully determined by 

experimenting and researching using tests methods such as Exploratory Testing, Pair Testing 

and Bug Hunting. 

¶ Performing (automated) checks based on established criteria using testing methods such as 

Unit testing, Integration Testing, Security Testing, Performance Testing and Compliance 

Testing. 

Who 

¶ People who have the right people skills, agile skills, test skills, technology skills, and who have 
the motivation and credibility and are able to obtain, retain and improve these skills, 
motivation and credibility. 

 
Detail on the άWhoέ:  

¶ Motivation: a tester needs to be motivated to learn by improving the skills. Without being 
motivated yourself you can not improve your team. 

¶ Credibility: by delivering value that is not directly a visible product (insight in quality) a tester 
in an Agile context needs credibility in and outside the team in order to do a good job. If you 
have no credibility you are constantly defending what you are doing instead of adding value. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 11 of 49 

¶ People skills: in a team a tester needs many people skills in order to do a good job as a tester 
in an Agile context. You must be able to, for example, give good feedback, ask difficult 
questions, think critically and tell the testing story. You need to be able to communicate to 
stakeholders, business, clients, and to developers and people from operations. 

¶ Agile skills: a tester in an Agile context needs the agile mindset to keep focus on delivering 
value for your customers. This means you need to understand agile and the software 
development lifecycle and any methods used to deliver the value (Scrum, XP, Kanban, 
DevOps, ....). 

¶ Test skills: insights on the status of the product need to be available instantly and constantly. 
This requires a really different test strategy and different test methods. A tester in an Agile 
context needs a broad range of methods in her/his toolbox in order to use the most 
appropriate one in the specific context of the project and product. 

¶ Technology skills: a tester in an Agile context needs to know the technology of the product 
and development environment. You need to be able to read code, write automated tests on 
diferent levels and define risks based on used technology. 

 
A visual representation is made by Karen Greaves and Sam Laing [GA1] 

 
Figure 2 

 

1.5 Scrum 
 

LO-1.7 K2 Understand the Scrum framework 

HO-1.1 HO-3 Share the current definitions of Scrum among the group 

LO-1.8 K2 Explain the Scrum framework and the role of a tester in the team 

LO-1.9 K1 Recall the roles of Product Owner, Scrum Master and Scrum Team 

LO-1.10 K1 Recall the use of planning estimation (like story points) and test points vs 
including test estimates 

LO-1.11 K2 Explain the testing perspective in planning poker and the test role in sprint 
planning 

LO-1-12 K1 Recall velocity driven and commitment driven planning 

LO-1.13 K2 Understand test estimates 

LO-1.14 K2 Explain the test role in refinement sessions 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 12 of 49 

LO-1.15 K2 Explain the test role in retrospectives 

LO-1.16 K2 Understand the test role in a Program Increment / Release planning 

LO-1.17 K1 Learn some commonly used Scrum anti-patterns like N+1 test iteration or 
hardening iterations to resolve technical debt 

 

There are many agile frameworks: XP, Scrum, Kanban, Lean, Crystal and many more. Scrum is used 

during the training as being the most used framework. 

There are many different implementations and variations of the most commonly used Agile 

framework: Scrum. People often start making changes to the original framework even before they 

start using it. This often results in non-Agile ways of working and should not be called ´Agile´. This 

information is helpful and needed to understand the role of a tester in an Agile team. 

Scrum is founded on empirical process control theory, or empiricism. Empiricism asserts that 

knowledge comes from experience and making decisions based on what is known. Scrum employs an 

iterative, incremental approach to optimize predictability and control risk. Three pillars uphold every 

implementation of empirical process control: transparency, inspection, and adaptation [SC1]. 

The different roles in a typical Scrum team are recalled: Product Owner, Scrum Master and Team 

Member and their responsibilities. 

The different events in Scrum are recalled: daily Scrum, product backlog refinement, sprint planning, 

sprint review, retrospective. 

A closer look is taken at work estimation according to the sprint planning sessions. Explained is the 

role of the most commonly used estimation method using story points versus hour estimation. Also 

the option to have separate test points and development points and join them to get the estimate is 

discussed, as well as the option to include the testpoints without explicitely mentioning them. By 

splitting the roles and points the estimation seems easier; however, it creates less opportunities to 

learn from each other and discuss about the story (which is the whole point of doing estimation). The 

role of the team member with testing skills in sprint planning is also to challenge the team and keep 

them alert as well as asking critical questions about the stories. Another role of this is to get the team 

to an understanding that making a small program change can sometimes have big consequences for 

testing and the test estimates. We also mention 2 commonly used ways to plan a sprint: velocity 

driven and commitment driven. They slightly differ; however, a sprint planning is mainly about 

consensus, and not about planning. 

! ǘŜǎǘŜǊΩǎ ƳƛƴŘǎŜǘ ƛǎ ǊŜŀƭƭȅ ǾŀƭǳŀōƭŜ ƛƴ ǊŜŦƛƴŜƳŜƴǘs to bring in the critical thinking aspect and a 

different approach to a story (what could potentially go wrong versus how we can make it work). If in 

an organization it is not common practice to involve a tester in refinements, action should be taken 

to convince the team to involve all team members including the tester in the refinement. 

The retrospective is a very important event in Scrum. It brings the possibility to reflect and learn. This 

also means a team will need a fail-safe environment as team members share the things that probably 

failed in order to learn from it and do better next time. This means that people will need the 

confidence that they can take a vulnerable position and most people find that difficult. As testers, we 

have no special role in a retrospective; we can help our team though by taking the vulnerable 

position first and share a (testing) experiment we performed and that failed and what we learned 

from that. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 13 of 49 

If a team is in an Agile at scale environment, there will be Product Increment sessions in which a 

tester can add a lot of value from the testing perspective towards business goals and making sure 

organizational readiness is there from a test perspective. Also, a tester can give input if the tester is 

aware of people´s planning bias. 

The Scrum part is finished with some commonly used practices that are considered anti-patterns of 

Agile and Scrum: 

¶ The N+1 Iteration or lagging test iteration: in iteration N, the development is performed and 

the testing of that development is completed in the N+1 iteration. The fixes are most likely 

done in the N+2 iteration. 

¶ Hardening iterations, as a result of build-up technical debt: hardening iterations are used to 

fix low quality-built solutions (technical debt) in previous iterations. If refactoring is part of 

every sprint iteration, there is no need for hardening iterations. 

¶ Mini-waterfall: instead of real Scrum, the team designs, builds and tests during an iteration 

according to the iteration length waterfall scenario. 

 

1.6 Tester in an Agile context 
 

LO-1.18 K2 Understand the shift of the testerΩǎ role in an Agile context 

LO-1.19 K2 Be able to explain what the testersΩ role is in an Agile team 

LO-1.20 K2 Understand the role of a tester as the key quality driver in an Agile team 

LO-1.21 K2 Understand the skills that are essential for a tester in an Agile context 

 

The differences between the role of a tester in a more traditional environment and the role of a 

tester in an Agile context are explained. The role has shifted from a functional tester of requirements 

(performing mainly checks) to a q́uality engineeŕ, which partly requires different skills (as 

mentioned before). 

In Agile, quality is a team responsibility and if the team doesn't pick up that responsibility, or doesn't 

understand it, the tester is responsibile for helping the team in understanding and implementing this 

responsibility. The tester in an Agile context must be the person who makes the team aware of 

quality. Examples: 

¶ A tester in an Agile context motivates product owners/customers to be concise about what 
they want. 

¶ A tester in an Agile context pairs with Product Owner/stakeholders from the start to make 
user stories as specific as possible. 

¶ A tester in an Agile context coaches developers about the value of good coding practices 
including unit testing. 

A tester in an Agile context is a quality driver/architect in the team as she/he has the natural quality 

mindset. 

In order to be the quality engineer, a tester in an Agile context needs specific skills, such as 

people/communication skills to bring messages/new ideas to the team and technology skills to help 

developers with creating good unit tests and test skills to explore the unknown of the application and 

many more skills of which the most important ones are praticed in this training. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 14 of 49 

1.7 Critical thinking 
 

HO-1.2 HO-3 Get the definitions from the students to start a discussion 

LO-1.23 K2 Demonstrate the definition of critical thinking 

LO-1.24 K2 Demonstrate the definition of a claim or assertion 

HO-1.3 HO-1 Practice with the claims, conclusions and constructions to understand the 
complexity 

LO-1.25 K2 Understand and recognize fallacies 

LO-1.26 K2 Understand thinking errors and how they influence people´s judgement 

LO-1.27 K3 Apply all the definitions that play a role in thinking critical 

HO-1.4 HO-2 Practice critical thinking by using argumentation, claims, constructions, fallacies 
and thinking errors 

 
Critical thinking (or Scepticism) is generally a questioning attitude or doubt towards one or more 

items of putative knowledge or belief or dogma. It is often directed at domains, such as the 

supernatural, morality (moral scepticism), theism (scepticism about the existence of God), or 

knowledge (scepticism about the possibility of knowledge, or of certainty). 

Claim and assertions are being discussed as being a meaningful statement that is: 

¶ True 

¶ Not true 

¶ Neither ́ true´ or ́ not true  ́

Argumentation and reasoning are being discussed as being a construction of claims that cause a 

conclusion. 

A conclusion is valid if the denial of the conclusion is in contradiction with one of the used claims in 
the construction. An example: 

¶ Claim 1:  άWŀƴ ƛǎ ŀ ǘŜǎǘ ŀƴŀƭyǎǘΦέ 

¶ Claim 2:  ά!ƭƭ ǘŜǎǘ ŀƴŀƭyǎǘǎ ŀǊŜ ŎǊƛǘƛŎŀƭ ǘƘƛƴƪŜǊǎΦέ 

¶ Conclusion:  άWŀƴ ƛǎ ŀ ŎǊƛǘƛŎŀƭ ǘƘƛƴƪŜǊΦέ 
The conclusion is valid as you can not deny it based on claim 1 and claim 2. The conclusion is 
however not true because at least 1 claim is neither ´true´ or ´not true´. 
 
Fallacies are defined and demonstrated as people often use fallacies to convince other people to do 

what someone wants them to do instead of doing the right thing. A tester needs to learn how to 

recognize fallacies as they play an important role in being critical. Being critical is one of the most 

important values that a tester can bring to the team. 

People keep considering errors [KM1] as arising from an irrational judgement. Conclusions are drawn 

irrationally. People continue on the road to critical thinking although it is a painful and difficult trip. 

Shared is why not being critical looks way easier (however in the end it is not). 

The trip is finished by giving multiple examples of how to become a critical thinker and practice being 

critical with an exercise by using a serious game. 

 

 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 15 of 49 

1.8 Retrospectives 
 

LO-1.28 K2 Understand the definition of a retrospective 

LO-1.29 K2 Explain the purpose of retrospectives 

LO-1.30 K2 Demonstrate the need of retrospectives and the role of a tester 

LO-1.31 K3 Be able to implement retrospectives in a team 

LO-1.32 K1 Be able to select different types of retrospectives 

HO-1.5 HO-3 How can a serious game be used for a retrospective 

 

The retrospective is a very important event in Scrum. It brings the possibility to reflect and learn. This 

also means a team will need a fail-safe environment as team members share the things that probably 

failed in order to learn from it and do better next time. This means people need the confidence that 

they can take a vulnerable position and most people find that difficult. As testers, we have no special 

role in a retrospective; we can help our team though by taking the vulnerable position first and share 

a (testing) experiment we performed and that failed and what we learned from that. 

Continuous learning plays a key role in Agile. As a tester, you need to understand the role of a 

retrospective and be able to perform a retrospective as well. 

The definition of a retrospective according to the Scrum guide isΥ ά¢ƘŜ {ǇǊƛƴǘ wŜǘǊƻǎǇŜŎǘƛǾŜ ƛǎ ŀƴ 

opportunity for the Scrum Team to inspect itself and create a plan for improvements to be enacted 

ŘǳǊƛƴƎ ǘƘŜ ƴŜȄǘ {ǇǊƛƴǘέΦ 

The definition is discussed in detail to explore the real meaning of the highlights in this definition: 

¶ Opportunity 

¶ The Scrum team inspects itself 

¶ Create a plan 

By discussing the meaning of retrospectives, we come to their actual purpose : to be critical of 

yourself and others in order to learn and do better next time (continuous improvement). 

A variety of different retrospectives is shown in order to produce different kinds of improvement 

focus ς it could be either teamwork, quality, tooling, communication, etc. ς and to keep 

retrospectives interesting. 

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 16 of 49 

Chapter 2 ς Start Testing ς A Case 
 

The hands-on training is built around a case that is used to explain the theory. The case contains real 

software (and optional hardware) [SH1] to be tested. 

Keywords 

Agile, Testing, Test strategy, Questions, Feedback, Critical thinking, Risks, Riskstorm, Exploratory 

Testing, Headline game, Test automation, Check automation, Oracles, Heuristics, Mnemonics, 

Product Outline, Project Outline, Issues 

HO-2.1 HO-3 Start testing unknown software that optionally runs on specific hardware 

LO-2.1 K3 Optimal use of the given situation, documentation and other information at 
hand 

LO-2.2 K1 Recall the need of asking questions before actually doing something in order to 
understand the specific situation 

LO-2.3 K1 Recall the need of asking questions before actually doing something in order to 
understand the specific needs 

LO-2.4 K1 Recall the need of asking questions before actually doing something in order to 
start your test in a useful direction 

HO-2.2 HO-3 Test a specific subject (something that looks like a ball) 

LO-2.5 K2 Understand the need of asking questions 

LO-2.6 K2 Understand the value of questions in general 

LO-2.7 K2 Understand the value of questions in relation to testing 

LO-2.8 K2 Understand the definition of feedback 

LO-2.9 K2 Understand the meaning and value of feedback 

LO-2.10 K2 Rephrase feedback to testing 

LO-2.11 K2 Understand the ground rules of feedback 

LO-2.12 K3 Apply 4 different methods of feedback 

HO-2.3 HO-2 Practice feedback in a real-life testing situation 

LO-2.14 K2 Understand what models are and how we use models (Mental, Conceptual and 
Real Things/World) 

LO-2.15 K3 Apply models to software development and testing in specific 

HO-2.4 HO-3 Create a project outline and present it to everybody 

LO-2.16 K2 Understand the definition of a project outline 

LO-2.17 K3 Apply the project outline to your project 

LO-2.18 K2 Understand the relation between a project outline and testing 

LO-2.19 K1 Remember to ask questions to get the needed information for the project 
outline 

LO-2.20 K3 Apply asking questions to get a good project outline 

LO-2.21 K3 Use the mnemonic PROJECT to help us create the project outline 

HO-2.5 HO-3 Create a product outline by exploring the product (Case software/hardware) 

LO-2.22 K2 Understand the definition of a product outline 

LO-2.23 K3 Apply the product outline to your project 

LO-2.24 K2 Understand the relation between a product outline and testing 

LO-2.25 K1 Remember to ask questions to get the needed information for the product 
outline 

LO-2.26 K3 Apply asking questions to get a good product outline 

LO-2.27 K3 Use PRODUCT to help us create the product outline 

 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 17 of 49 

2.1 Test the case software 
 

HO-2.1 HO-3 Start testing unknown software that optionally runs on specific hardware 

LO-2.1 K3 Optimal use of the given situation, documentation and other information at 
hand 

 

Real life projects are generally ongoing when a new team member gets involved. As new member 

you need to deal with already existing software and environments, and there is usually little time and 

no existing documentation, or an outdated one, on how the software is supposed to work. 

By means of an actual project testing situation, you, as a tester, learn how to start your testing by 

using the information at hand and by asking questions to obtain the information you require/need. 

 

2.2 Questions 
 

LO-2.2 K1 Recall the need of asking questions before actually doing something in order to 
understand the specific situation 

LO-2.3 K1 Recall the need of asking questions before actually doing something in order to 
understand the specific needs 

LO-2.4 K1 Recall the need of asking questions before actually doing something in order to 
start your test in a useful direction 

HO-2.2 HO-3 Test a specific subject (something that looks like a ball) 

LO-2.5 K2 Understand the need of asking questions 

LO-2.6 K2 Understand the value of questions in general 

LO-2.7 K2 Understand the value of questions in relation to testing 

 

Before testing something, the tester needs to get as much information about it as possible: 

¶ Who is asking you to test the subject and what is his/her relation to the subject? 

¶ What do you think the subject is and what does that mean to you? 

¶ What is the intended use of the subject? 

¶ What should you test, what is important, where are potential risks? 

¶ Was it already tested before and are there any results of these tests available? 

¶ What has been changed to the subject recently? 

¶ How much time is available? 

¶ Who is/was involved and can be consulted for more information? 

¶ Many more questions can be asked depening on the context and available information. 

The need is explained to understand why, who and when questions should be asked: 

¶ To get more information about anything, at any time. 

¶ When things are unclear to you. 

¶ What you think is true does not have to be true. 

¶ What you know does not have to be complete. 

¶ To check whether you understand the real risks. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 18 of 49 

2.3 Feedback 
 

LO-2.8 K2 Understand the definition of feedback 

LO-2.9 K2 Understand the meaning and value of feedback 

LO-2.10 K2 Rephrase feedback to testing 

LO-2.11 K2 Understand the ground rules of feedback 

LO-2.12 K3 Apply 4 different types of feedback 

HO-2.3 HO-2 Practice feedback in a real-life testing situation 

 

¢ƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ŦŜŜŘōŀŎƪ ƛǎΥ άόwŜύŀŎǘƛƴƎ on changeable behavior or changeable products and 

processesέΦ 

A tester provides feedback which is the most important result of the work done. The challenge is that 

this feedback is usually not a positive feedback. Usually, testers find issues on the quality of what 

someone else has created. The non-positive feedback can feel negative towards the creator of the 

work. 

For that reason, it is important for a tester to be able to give feedback in the most constructive way, 

in order to obtain the best results. The ground rules of feedback are given and 4 different ways of 

giving feedback are provided so you can choose the way that, in your specific situation, has the 

highest change of being successful: 

¶ Corrective feedback; behavior, feelings, consequences, desired behavior. 

¶ Evaluating feedback; the Pendleton method [PD1]. 

¶ Activating feedback; the hamburger method [HB1]. 

¶ Motivating feedback; a compliment 

All 4 ways of providing and receiving feedback are practiced. 

 

2.4 Models 
 

LO-2.14 K2 Understand what models are and how people use models (Mental, Conceptual 
and Real Things/World) 

LO-2.15 K3 Apply models to software development and testing in specific 

 

Models are a simplification of the real world. Models can be made for everything around us; a new 

product such as a car or a house, but also models from an event that you organize, like a birthday 

party. 

People use and need models because the real world is way too complicated. Just try to imagine a 

birthday party and write down everything that is related to that birthday party. You can probably 

come up with people, cake, drinks, etc., however, you will never be sure of who will attend until they 

are really there. Neither do you know for sure what they want to drink.... 

So, people use models to deal with situations that are too complicated to handle. Creating software 

and testing software is such an activity. It is impossible to deal with complexity without using all kind 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 19 of 49 

of models (Mental, Conceptual and Real Things/World) to bring some order in the chaos. Some 

examples of models are f.e. a database models and user models. 

 

Source: David Hestenes [DH1] 

Testers (people in general) have a broad set of preconceived models in their mind. For software 

development and testing, we can mention mental models, technical models, domain models and in 

general experiential models.  

When testing software, testers link what they see (in the product or project or documentation) to 

their own models and they draw conclusions from that. The deeper we connect the model to what 

we see, the more we focus. People can, however, not be focussed all the time, and focussing also 

narrows down the scale of what can be seen, so we need to be aware that we also need to de-focus 

to see the bigger picture. 

 

2.5 Test strategy global overview 
 

In order to create the best insights in the status of the product, the team needs an approach on 

quality. In the syllabus this is referred to as the test strategy. The test strategy consists of different 

parts of information: 

¶ A project outline to get and share information about the environment. 

¶ A product outline to get and share information about the product itself. 

¶ A risk outline to get and share information about potential risks. 

¶ A test outline to get and share information about the choosen testing approach: 

o What kind of tests are performed. 

o Which tests are done and when. 

o Test environments and tooling. 

o Reporting. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 20 of 49 

Please note that a test strategy is an incremental product. It develops over time. There is no need to 

be complete from the start. Also note that all parts in a test strategy should not be a duplication of 

already existing products. In that case, put in a reference. 

The purpose of a test strategy is not only to get information, but also to share and discuss any quality 

and test related subjects within (and potentially also outside) the team. A test strategy is a real-life 

reflection on the project, the product, the status of the product, the risks and the way the team deals 

with quality and testing. 

It is highly recommended to visualize the test strategy to keep it alive and constantly remind the 

team of the need for quality and be aware of elements that can influence the quality. 

 

2.6 Project outline 
 

HO-2.4 HO-3 Create a project outline and present it to everybody 

LO-2.16 K2 Understand the definition of a project outline 

LO-2.17 K3 Apply the project outline to your project 

LO-2.18 K2 Understand the relation between a project outline and testing 

LO-2.19 K1 Remember to ask questions to get the needed information for the project 
outline 

LO-2.20 K3 Apply asking questions to get a good project outline 

LO-2.21 K3 Use the mnemonic PROJECT to help us create the project outline 

 

Each project and everything in its environment can have an impact on the decision to test or not test 

something. As a tester in an Agile context, you need to be able to create a project outline to get 

insights in the project in order to make decisions, together with the team,  on what to test or what 

may not need to be tested. A lot of this information is hidden in culture, people, history, customers, 

implicit knowledge and so forth. Testers needs to be able to ask the right questions to clarify this 

information so we can deploy the right strategy and approach on testing. 

The mnemonic PROJECT helps you to create a project outline and contains the following information: 

Purpose Mission and Vision 
Relations Scrum-team / Development-team 
Objectives Key performance indicators 
Jeopardy Chances for the project and threats to it 
Environment Technical environment (tools, hardware, software, information (requirements, etc.)) 
Clients  Stakeholders, Sponsors, Tribes 
Team rules Team values, Working Agreements 
 
Purpose 

¶ Vision 
o How does the product change the world of users (e.g. less repetitive work)? 
o Which problem is solved / which benefit is provided, and for whom? 

¶ Mission 
o Defines the users of the product to be created. 
o Defines the actions and final results of the team. 
o Defines which product or service the team will deliver. 
o Defines the attributes of the product or service that describes the added value. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 21 of 49 

o Defines the generic value of the product for the customer. 
Relations 

¶ What does each team member bring?  

¶ What makes every team member happy? 
Objectives 

¶ KPIs that are clear to the team 
o External: on July the 1st, 2020 (after iteration 5) the new software will reduce the 

occupancy of the customer service desk by 20% in two months. 
o Internal: on March the 1st, 2020, team production increased by 10% (N story points 

per iteration from 100 to 110). 
Jeopardy 

¶ Although the entire άprojectέ only takes 2 to 3 days, you can also look at opportunities and 
risks in such a short period: 

o Is the PO / Customer / Sponsor available during those 3 days? 
o Is there only 1 test object? What if it breaks down? 
o Shall we focus on deal breakers for the product, so that we might be able to finish a 

lot sooner (and do we want that?) 
Environment 

¶ Instructions. 

¶ The software. 

¶ Any specific hardware. 

¶ Any tools you might use or have to use. 
Clients 

¶ Stakeholders: the client: what is her/his interest? 

¶ Sponsors: who in this project wants tests to be carried out? Is this someone other than the 
stakeholder? 

¶ Teams: are other teams or your own team perhaps clients as well? 
Team rules 

¶ Team rules 
o Examples 

Á Openness: άSpeak out about topics that concern yourself or the team.έ 
Á Courage: άCommunicate openly and put everything on the table.έ 

¶ Work agreements 
o Examples 

Á During meetings, we stick to the subject. 
Á We determine in this order: experts first, sociocratic (no objection), 

consensus (everyone in favor), democratic. 
Á Learning: we fail fast, a lot and identify our mistakes as soon as possible. 
Á We respect our deadlines. In the event of force majeure, we will inform the 

whole team and the stakeholders. 
 

2.7 Product outline 
 

HO-2.5 HO-3 Create a product outline by exploring the product (Case software/hardware) 

LO-2.22 K2 Understand the definition of a product outline 

LO-2.23 K3 Apply the product outline to your project 

LO-2.24 K2 Understand the relation between a product outline and testing 

LO-2.25 K1 Remember to ask questions to get the needed information for the product 
outline 

LO-2.26 K3 Apply asking questions to get a good product outline 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 22 of 49 

LO-2.27 K3 Use PRODUCT to help us create the product outline 

 

In order to understand what we are testing, we need an overview of the product itself. A tester 

needs to create a map to help him/her understand the product. If we do not understand the product, 

we cannot test it properly. 

A helpful mnemonic to help us is PRODUCT: 

Platform What the product runs on (technically) 
Relations How we (or another system) interact with the system 
Operate How the product operates 
Data  What the product processes 
Users  All the elements of the product 
Construction How the product is used 
Time  Relationships between the product and time 
 
Platform 

¶ Hardware 

¶ Middleware 

¶ Software 
Relations 

¶ User interfaces 

¶ System interfaces 

¶ API interfaces 

¶ Import/Export 
Operate 

¶ Application: any function that defines the product. 

¶ Calculation: any mathematical function in the product. 

¶ Security: user rights, data security, encryption, front and back end security, vulnerabilities in 
subsystems. 

¶ Transformations: font settings, inserting clip art, money transfers, etc.  

¶ And more 
Data 

¶ How does the product handle data? 
o Input / output 
o Persistent 
o Invalid / Noise 
o Lifecycle (CRUD) 
o And more 

Users 

¶ Users 

¶ Environment (physical, light, distractions, noise) 

¶ Common use (patterns, sequences or input) 

¶ Disfavored use (mistakes, ignorance, malicious, stupid use) 

¶ Extreme use 
Construction 

¶ Code: from executables to individual routines. 

¶ Hardware: every hardware component integral to the project. 

¶ Non-executables: all files other than multimedia or programs, such as sample data, help files. 

¶ Collateral: everything beyond the above: web links and content, packaging, licenses, etc. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 23 of 49 

Time 

¶ Input output delays and intervals. 

¶ Fast / Slow: input 

¶ Changing rates: spikes, bursts, hangs, bottlenecks, interruptions. 

¶ Concurrency: multi-user, time sharing, threads, shared data. 

¶ Time-out settings, periodicals, time zones, company holidays, guarantee periods, chrono 
functions. 

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 24 of 49 

Chapter 3 ς Risks 
 

άRiskέ is the keyword for any test strategy. However, in an Agile environment, the risks are changed 

and coming from more different sources than before. This requires a different strategy of dealing 

with risks. 

Keywords 

Agile, Testing, Test strategy, Critical thinking, Risks, Riskstorm, Headline game 

LO-3.1 K2 Understand what is important in a product and what is not in relation to risks 

LO-3.2 K2 Understand that a risk is only valuable if it is specific enough 

LO-3.3 K2 Understand the definition of a risk 

LO-3.4 K2 Understand the challenges when it comes to defining risks 

LO-3.5 K2 Be able to explain the different types of risks 

LO-3.6 K2 Be able to separate the different types of risks 

LO-3.7 K2 Understand how risk of type A can influence risks of type B 

LO-3.8 K2 Understand the role of a tester in relation to risks and the product 

LO-3.9 K2 Understand what an oracle is 

LO-3.10 K2 Be aware of oracles 

LO-3.11 K1 Understand the value of oracles in testing 

LO-3.12 K1 Understand the risk of oracles based on invalid principles or mechanisms 

LO-3.13 K2 Understand the 2 different approaches towards risk analysis 

LO-3.14 K3 Apply the best approach (combination as well) to your situation 

HO-3.1 HO-2 Perform a risk analysis on the Case product based on the given methods 

HO-3.2 HO-2 Do a risk nightmare headline game on the Case product 

HO-3.3 HO-2 Present your risk analysis headline game to the group 

LO-3.15 K3 Be able to execute a headline game 

HO-3.4 HO-2 Execute a Testsphere riskstorm with hints by the trainer 

HO-3.5 HO-2 Present your risk analysis riskstorm to the group 

LO-3.16 K1 Recall the different approach between Agile and waterfall 

LO-3.17 K1 Relate Agile to risk assessment 

LO-3.18 K2 Demonstrate the continuous risk assessment cycle 

 

3.1 Risks 

 

3.1 Definition of risk 
 

LO-3.1 K2 Understand what is important in a product and what is not in relation to risks 

LO-3.2 K2 Understand that a risk is only valuable if it is specific enough 

LO-3.3 K2 Understand the definition of a risk 

LO-3.4 K2 Understand the challenges when it comes to defining risks 

 

To identify risks, a team needs to know what is important and what is not.  Something that is not 

important is not a risk.  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 25 of 49 

Anything that is important can be a risk, however not everything important can or will or must be 

tested to mitigate a risk. 

A risk is only a valuable risk if it is specific enough. For example: it is a risk if the app is too slow. This 

is a risk; however, it is not very useful for testing. What is άtoo slow ς is it the entire app, or just 

specific parts? 

This means there are a few difficult questions to be asked while testing a risk: 

¶ What is a threat to the value of the product? 

¶ Who are the persons who matter? 

¶ How do we determine the actual probability? 

¶ How do we determine its impact? 

In order to speak the same language in a team, we need to start with a clear definition of the used 

terminology. The next definition of a risk is used: 

άwisk is anything that threatens the value of a product to a person that matters[JW1].  

Risk is a combination of the probability that the risk may occur and the impact it will have if 

becoming a realityέ. 

 

3.2 Type and area of risks 
 

LO-3.5 K2 Be able to explain the different types of risks 

LO-3.6 K2 Be able to separate the different types of risks 

LO-3.7 K2 Understand how project risks can influence product risks 

 

There are different types of risks: 

¶ Project risks for which we can use PROJECT (project outline) as a base. 

¶ Product risks for which we can use PRODUCT (product outline) as a base. 

Risks can influence other risks, also across different types of risks. Example: having too many 

inexperienced developers is a project risk. This risk is likely to become a product risk as well. 

Inexperienced developers are more likely to make mistakes due to their lack of experience. This 

threatens the value of the product and probably requires more testing effort.  

 

3.3 Risk Coverage 
 

LO-3.8 K2 Understand the role of a tester in relation to risks and the product 

 

There are 3 important statuses of a product that relate to risks: 

¶ What we already know. 

¶ We know everything there is to know. 

¶ We know enough to make an informed decision about the product. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 26 of 49 

Teams, and testers especially, have to ask questions, trust their intuition, and explore. Why? Because 

of the RISK GAP: it is the task of every team member (and the tester being the driver) to ensure that 

we know as much as possible about the (to be built) product (and project) so that we can obtain 

sufficient insight into the associated risks. So that ultimately, based on the resulting test measures, 

an 'informed decision' can be made about the follow-up. 

 

Figure 3 

 

3.4 Oracles 
 

LO-3.9 K2 Understand what an oracle is 

LO-3.10 K1 Be aware of oracles 

LO-3.11 K1 Understand the value of oracles in testing 

LO-3.12 K1 Understand the risk of oracles based on invalid principles or mechanisms 

 

An oracle is a principle or mechanism by which people recognize a problem [BO1]. In testing that is 

usually our expected result [TE1]. 

Oracles are very powerful for testers, if we are aware of them, as they help us recognize potential 

issues that threaten the value of the product: risks! 

Oracles can also be ´dangerous´ if your used principles or mechanisms are invalid. This will result in 

many ´problems´ which are not a real problem. 

 

3.5 Inside out versus outside in risk analysis 
 

LO-3.13 K2 Understand the 2 different approaches towards risk analysis 

LO-3.14 K3 Apply the best approach (combination as well) to your situation 

 

Risk analysis can be approached in 2 different ways. Usually, both ways need to be combined to be 

complete in your risk assessments: 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 27 of 49 

¶ Inside out: we start with the knowledge available from the people involved 

¶ Outside in: we start from generic quality attributes and risk checklists 

Inside out: 

Experts and stakeholders make a list of potential vulnerabilities on the component level and what 

could go wrong on each component. They also think about which input situation could lead to the 

component failing and finally they think about who the victims of this failure could be. 

Teams need to have specific (technical) knowledge about the system to take the inside out route. 

Outside in: 

Instead of opting for the in-detail level, you keep the detail to much more generic quality attributes 

and generic risk lists or user stories. This will result in a different list of potential risks. If you do not 

(yet) have more specific technical knowledge available, this method is the starting point. 

 

3.6 Risk analysis: headline game 
 

HO-3.1 HO-2 Perform a risk analysis on the Case product based on the given methods 

HO-3.2 HO-2 Do a risk headline game on the Case product 

HO-3.3 HO-2 Present your risk analysis nightmare headline game to the group 

 

An outside-in risk analysis is performed based on the case by using the Nightmare Headline Game 

[EH1]. This method is based on defining risks on what the team/organization does not want to be in 

the newspapers in the morning about the software the team just released yesterday. 

Step 1: Brainstorm a list of serious failures 
Step 2: Choose a risk to work on 

Ask the group to scan the list looking for a nightmare that stands out as: 

¶ Plausible 

¶ Software-related 

¶ Interesting 
Step 3: Brainstorm contributing causes 
Step 4: Refine causes into test cases 
Step 5: Lather, rinse, repeat 
 

3.7 Risk analysis: riskstorm using Testsphere© 
 

HO-3.4 HO-2 Execute a Testsphere riskstorm with hints by the trainer 

HO-3.5 HO-2 Present your risk analysis riskstorm to the group 

 
After the headline game, a completely different way to determine risks is used by using (inside-out) 
riskstorm. We use the Testsphere [TS1] deck of cards. This serious game will help you identify risks. 
We introduce the light blue (quality criteria) cards and the pink (heuristics) cards in order to 
determine and later zoom in on the risks. 
 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 28 of 49 

 
Figure 4 

 

3.8 Risks in Agile: the continuous risk assessment cycle 
 

LO-3.16 K1 Recall the different approach between Agile and waterfall 

LO-3.17 K1 Relate Agile to risk assessment 

LO-3.18 K2 Demonstrate the continuous risk assessment cycle 

 

In an Agile environment, assessing risks is a continuous process. Teams cannot do just 1 product risk 

analysis and use that throughout the whole project. Each time you create or modify or test 

something, you will get new information about the product and about potential risks. These are the 

actual risks. Based on the results, the team can ship the product or do some fixing and/or do some 

more testing. This cycle will run forever while the team is delivering software. 

The level on which the team goes through the cycle usually matches the cycle of delivering the 

product to production. However, any cycle time is ok: from release or iteration until user story or 

feature or... 

 

Figure 5 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 29 of 49 

¶ New cycle/iteration: start of the (new) cycle. Level can be any (release, iteration, feature, ...). 

¶ Analyse potential risks: use a risk analysis tool of your choice to get an insight in any potential 
risks. 

¶ (Re)build something: team members with a developer role will create the software. 

¶ As soon as possible the new component is delivered to perform testing (any test that fits the 
assigned risks). 

¶ Most likely the team will discover (potential) problems. Problems are fixed and tested again. 
During testing you can also find new risks that need more testing. 

¶ When the risk gap is closed (and when the PO/stakeholders decide) the product can be 
shipped by the team. 

¶ After shipping problems (and risks) could be found and the cycle starts again. 

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 30 of 49 

Chapter 4 ς User Stories 
 

User stories are the most used way of reporting/documenting specifications. Although user stories 

are less complex than a fully functional and technical design, they could create issues within the Agile 

team. Examples are: user stories can be unclear, incomplete, too big, untestable or way too 

dependent on other stories.  

This is a threat to the quality of the end result and thus it makes it very relevant for a tester to know 

the details about good user stories. 

Keywords 

Value, feedback, format (WHO, WHAT, WHY), specific, acceptation criteria (GIVEN WHEN THEN 

format, boundary, consensus, test base, base for planning), horror plots, story splitting, (Workflow, 

CRUD (Create Read Update Delete), Roles), INVEST (Independent, Negotiable, Valuable, Estimable, 

Small, Testable). 

LO-4.1 K2 Understand the values of user stories 

LO-4.2 K1 Recall the elements of a user story 

LO-4.3 K2 Demonstrate the format with an example 

LO-4.4 K2 Understanding the pitfalls while using the format  

LO-4.5 K1 Define an acceptance criterion 

LO-4.6 K2 Understand the testersΩ role in defining and elaborating acceptance criteria 

LO-4.7 K2 Understand the pitfalls of defining acceptance criteria 

LO-4.8 K2 Understand horror plots as a medium to find acceptance criteria 

LO-4.9 K2 Understand story splitting 

LO-4.10 K2 Understand how to split stories 

LO-4.11 K1 Recall when to split a story 

LO-4.12 K2 Understand when a story is well split 

HO-4.1 HO-3 Analyse and redesign the given story 

 

4.1 Why do we use user stories? 
 

LO-4.1 K2 Understand the values of user stories 

 

User stories are used for at least two reasons: they create value for the customer and they are a 

medium to deliver feedback on the activities of a team [US1]. 

 

4.2 The elements of a user story 
 

LO-4.2 K1 Recall the elements of a user story 

 

Explain that user stories consist of the actual conversation about the customers needs and some 

form of writing is down with a short unique title, a WHO, WHAT and WHY [AA1] of the story, and one 

or more acceptance criteria.  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 31 of 49 

According to the 3C concept [JF1], a user story is the conjunction of three elements:  

¶ Card: The card is the physical media describing a user story. It identifies the requirement, its 
criticality, expected development and test duration, and the acceptance criteria for that 
story. The description has to be accurate, as it will be used in the product backlog.  

¶ Conversation: The conversation explains how the software will be used. The conversation 
can be documented or verbal. Testers, having a different point of view than developers and 
business representatives [ISTQB_FL_SYL], bring valuable input to the exchange of thoughts, 
opinions, and experiences. Conversation begins during the release-planning phase and 
continues when the story is scheduled.  

¶ Confirmation: The acceptance criteria, discussed in the conversation, are used to confirm 
that the story is done. These acceptance criteria may span multiple user stories. Both 
positive and negative tests should be used to cover the criteria. During confirmation, various 
participants play the role of a tester. These can include developers as well as specialists 
focused on performance, security, interoperability, and other quality characteristics. To 
confirm a story as done, the defined acceptance criteria should be tested and shown to be 
satisfied. 

 

4.3 Example and challenges 
 

LO-4.3 K2 Demonstrate the format with an example 

LO-4.4 K2 Understanding the pitfalls while using the format  

 

An example is provided. Once the students have understood this example, they are confronted with 
the fact that the example is flawed and why: a user story needs to be as specific as possible to be of 
some value. This specification is demonstrated. 
 

4.4 What is an acceptance criterion? 
 

LO-4.5 K1 Define an acceptance criterion 

LO-4.6 K2 Understand the testers role in defining and elaborating acceptance criteria 

 

Acceptance criterion is explained in terms of the format (we use: given, when, then (however there 
are no rules, the team decides)) and goal (creating boundaries, consensus on what (and what not) to 
do, and is a base for testing and estimating effort and planning). To be testable, acceptance criteria 
should address the following topics where relevant [WG1]: 

¶ Functional behavior: The externally observable behavior with user actions as input operating 
under certain configurations. 

¶ Quality characteristics: How the system performs the specified behavior. The characteristics 
may also be referred to as quality attributes or non-functional requirements. Common 
quality characteristics are performance, reliability, usability, etc. 

¶ Scenarios (use cases): A sequence of actions between an external actor (often a user) and the 
system, in order to accomplish a specific goal or business task. 

¶ Business rules: Activities that can only be performed in the system under certain conditions 
defined by outside procedures and constraints (e.g., the procedures used by an insurance 
company to handle insurance claims). 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 32 of 49 

¶ External interfaces: Descriptions of the connections between the system to be developed 
and the outside world. External interfaces can be divided into different types (user interface, 
interface to other systems, etc.). 

¶ Constraints: Any design and implementation constraint that will restrict the options for the 
developer. Devices with embedded software must often respect physical constraints such as 
size, weight, and interface connections. 

¶ Data definitions: The customer may describe the format, data type, allowed values, and 
default values for a data item in the composition of a complex business data structure (e.g., 
the ZIP code in a U.S. mail address). 

 

The role of a tester is to use all his/her knowledge and experience to get awareness in the team to 

have acceptance criteria with clear business value. 

Acceptance criteria are difficult to describe in a non-ambiguous way and the help of a tester is 

needed to do that. Thinking in acceptance criteria improve user stories. 

 

4.5 Horror plots 
 

LO-4.7 K2 Understand the pitfalls of defining acceptance criteria 

LO-4.8 K2 Understand horror plots as a medium to find acceptance criteria 

 

Horror plots are introduced as a medium to overcome the pitfall of the usual way to find acceptance 

criteria (being a non-conclusive list).  

Horror plots are for approaching userstories from a specific test point of view, where the main 

question is: "what can go wrong?".  

The definition of a horror plot: ´the outcome of a user story that you definitely do not want your 

customers to find out or see´. An example: i can see the bankaccount data from somebody else, as a 

horror plot of login to my personal bank environment. 

Horror plots are shown based on the user story, as introduced earlier on.  

 

4.6 Story Splitting  
 

LO-4.9 K2 Understand story splitting 

LO-4.10 K2 Understand how to split stories 

LO-4.11 K1 Recall when to split a story 

LO-4.12 K2 Understand when a story is well split. 

HO-4.1 HO-3 Analyse and redesign the given story 

 

This chapter starts with a story which is too big to build / understand / plan. This is followed by an 

explanation of three ways how we can split a story (workflow, data-actions, user roles). Then it is 

explained when to split stories and we end with the criteria used to check whether a story is of the 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 33 of 49 

right quality (the INVEST acronym (Independent, Negotiable, Valuable, Estimable, Small and 

Testable) is explained in detail).  

 

Figure 6 [AF1] 

Finally, students are confronted with a user story that requires them to apply the knowledge 

obtained in this module. They need to split the story, define new stories with the correct format; 

passively invited to find new acceptance criteria (using Horror plots), and also to check their own 

defined smaller user stories with the INVEST acronym.  

  



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 34 of 49 

Chapter 5 ς Test Strategy 
 

Based on the risks, the tester (and team) need to decide to choose an appropriate effective way of 

testing ς a way that fits the risks, the project, the company and its goals, the team and the product. 

The strategy needs to make clear what we are going to do, why we are doing it, how we are doing it, 

who is doing it and what the results of our actions have been. This gives the owner of the product 

(Stakeholders/PO) the best possible insights in the software and, based on these insights, they can 

decide what to do next. The first parts are covered in Chapter 2 and 3. This chapter contains the final 

parts of the test strategy objects. 

Keywords 

Agile, Testing, Test strategy, Exploratory testing, Checking, Test charter, Test automation, Test area´s 

LO-5.1 K2 Understand that a test strategy is about more than just the think it and build it 
phase in development. Testing is a constant activity, continuous quality. 

LO-5.2 K2 Understand that valuable information about the product will come from the 
production situation and can help you create a better understanding of risks 
and can help you adjust your test strategy. 

LO-5.3 K2 Understand the difference between different types of testing; checking versus 
intuition and exploration 

LO-5.4 K2 Be able to demonstrate the levels of testing mapped on Rumsfeld´s "There are 
known knowns" 

LO-5.5 K2 Understand the definition of BDD (Behaviour Driven Development) 

LO-5.6 K2 Understand the definition of SBE (Specification By Example) 

LO-5.7 K2 Understand the definition of  (A)TDD ((Acceptance) Test Driven Development) 

LO-5.8 K2 Understand the relations between BDD/(A)TDD/SBE 

LO-5.9 K2 Understand the specification syntax Gherkin 

LO-5.10 K2 Understand the relationship between BDD/(A)TDD/SBE, Gherkin and 
testautomation 

LO-5.11 K2 Understand 3-amigo sessions and example mapping 

HO-5.1 HO-2 Be able to use SBE and Example mapping 

LO-5.12 K1 Be able to recall the definition of exploratory testing according to Cem Kaner 

LO-5.13 K3 Use the definition of exploratory testing to execute an exploratory test 

LO-5.14 K2 Understand the different sources and possibilities to setup exploratory testing 

LO-5.15 K1 Be able to select appropriate sources to execute an exploratory test 

LO-5.16 K2 Understand what a test charter is 

LO-5.17 K2 Understand how to setup a exploratory test session 

LO-5.18 K2 Understand how to document your exploratory test sessions 

LO-5.19 K2 Understand the definition of test automation 

LO-5.20 K1 Recall checking versus intuition and exploration 

LO-5.21 K2 Understand the value of test automation 

LO-5.22 K2 Understand the limitations of test automation 

LO-5.23 K2 Classify different types of test in test automation 

LO-5.24 K3 Learn to apply the test automation pyramid 

LO-5.25 K2 Demonstrate the difference between the test automation pyramid and the test 
automation ice cone anti-pattern 

LO-5.26 K2 Understand the importance to be familiar to a broad range of tools that can 
make your testing more efficient 

LO-5.27 K2 Understand the value and need of automation in an Agile context 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 35 of 49 

 

5.1 General overview 
 

LO-5.1 K2 Understand that a test strategy is about more than just the think it and build it 
phase in development. Testing is a constant activity, continuous quality. 

LO-5.2 K2 Understand that valuable information about the product will come from the 
production situation and can help you create a better understanding of risks 
and can help you adjust your test strategy. 

LO-5.3 K2 Understand the difference between different types of testing; checking versus 
intuition and exploration 

LO-5.4 K2 Be able to demonstrate the levels of testing mapped on Rumsfeld´s "There are 
known knowns" 

 

First the domain of different types of tests is explored. There are many types of tests and each have 

their own objective and value. In the past, testers mainly focussed on the types of tests that are 

related to checks; tests that tell us something about facts we know from the system (by 

documentation). We check whether the system does what it is supposed to do ς does it work? 

Since the introduction of Agile, our customers become central in everything we do. Teams focus on 

whether the system/product does what a customer expects. This is a fundamentally different 

approach that is only partly covered when we check if the system functions correctly. Also, 

customers nowadays expect a system to be good quality. Failures could result in customers moving 

to a competitor who can deliver the same product that does not fail.  

Testing in Agile starts in the ́ think it´/  ́ desigń phase by turning you into a critical thinker who 

questions and challenges requirements and comes up with horror plots. This is usually called άshift 

leftέ. 

Also, during the shipping and especially during production, we perform άtestsέ by gathering data 

from monitoring and logging to gain information about the use of the product. We can also use tests 

such as A/B tests to get information about our new features. Usually this is called άshift rightέ. 

Teams constantly learn and adapt, based on the results of all the tests. We adjust the risks and our 

strategy all the time. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 36 of 49 

 

Figure 7 

 

Figure 8 

Testing has become a constant activity that starts with the Think it / Design and runs through to 

production. The purpose of the Agile Test Cycle is that you plot your own different types of test. So 

which tests are you going to do and when exactly? This is context dependent and the examples 

above are an interpretation. The purpose of the model is that you yourself start thinking about which 

tests you should do and when the most convenient time is to do them. 

 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 37 of 49 

5.2 Behaviour Driven Development 
 

LO-5.5 K2 Understand the definition of BDD (Behaviour Driven Development) 

LO-5.6 K2 Understand the definition of SBE (Specification By Example) 

LO-5.7 K2 Understand the definition of (A)TDD ((Acceptance) Test Driven Development) 

LO-5.8 K2 Understand the relations between BDD/(A)TDD/SBE 

LO-5.9 K2 Understand the specification syntax Gherkin 

LO-5.10 K2 Understand the relationship between BDD/(A)TDD/SBE, Gherkin and 
testautomation 

LO-5.11 K2 Understand 3-amigo sessions and example mapping 

HO-5.1 HO-2 Be able to use SBE and Example mapping 

 

In software engineering, behavior-driven development (BDD) is an Agile software development 

process that encourages collaboration among developers, QA and non-technical or business 

participants in a software project [DN1]. It encourages teams to use conversation and concrete 

examples to formalize a shared understanding of how the application should behave. It emerged 

from test-driven development (TDD) [KB1]. Behavior-driven development combines the general 

techniques and principles of TDD with ideas from domain-driven design [EE1] and object-oriented 

analysis and design to provide software development and management teams with shared tools and 

a shared process to collaborate on software development. 

TDD is a software-development methodology which essentially states that for each unit of software, 
a software developer must: 

¶ define a test set for the unit first. 

¶ make the tests fail. 

¶ then implement the unit. 

¶ finally verify that the implementation of the unit makes the tests succeed. 
This definition is rather non-specific in that it allows tests in terms of high-level software 
requirements, low-level technical details or anything in between. One way of looking at BDD 
therefore, is that it is a continued development of TDD which makes more specific choices than TDD. 
 
BDD specifies that tests of any unit of software should be specified in terms of the desired behavior 
of the unit. Borrowing from agile software development the "desired behavior" in this case consists 
of the requirements set by the business, that is, the desired behavior that has business value for 
whatever entity commissioned the software unit under construction. 
Following this fundamental choice, a second choice made by BDD relates to how the desired 
behavior should be specified. In this area BDD chooses to use a semi-formal format for behavioral 
specification which is borrowed from user story specifications from the field of object-oriented 
analysis and design.  
BDD specifies that business analysts and developers should collaborate in this area and should 
specify behavior in terms of user stories. Each user story should, in some way, follow the following 
structure: 

¶ Title 
An explicit title. 

¶ Narrative 
A short introductory section with the following structure: 

As a: the person or role who will benefit from the feature; 
I want: the feature; 
so that: the benefit or value of the feature. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 38 of 49 

¶ Acceptance criteria 
A description of each specific scenario of the narrative with the following structure: 

Given: the initial context at the beginning of the scenario, in one or more clauses. 
When: the event that triggers the scenario. 
Then: the expected outcome, in one or more clauses. 

BDD does not have any formal requirements for exactly how these user stories must be written 
down, but it does insist that each team using BDD come up with a simple, standardized format for 
writing down the user stories which includes the elements listed above. 
 
Specification by example (SBE) [GA1] is a collaborative approach to defining requirements and 
business-oriented functional tests for software products based on capturing and illustrating 
requirements using realistic examples instead of abstract statements. It is applied in the context of 
agile software development methods, in particular BDD. This approach is particularly successful for 
managing requirements and functional tests on large-scale projects of significant domain and 
organisational complexity. 
 
A key aspect of SBE is creating a single source of truth about required changes from all perspectives. 
When business analysts work on their own documents, software developers maintain their own 
documentation and testers maintain a separate set of functional tests, software delivery 
effectiveness is significantly reduced by the need to constantly coordinate and synchronise those 
different versions of truth. With SBE, different roles participate in creating a single source of truth 
that captures everyone's understanding. Examples are used to provide clarity and precision, so that 
the same information can be used both as a specification and a business-oriented functional test. 
Any additional information discovered during development or delivery, such as clarification of 
functional gaps, missing or incomplete requirements or additional tests, is added to this single source 
of truth. As there is only one source of truth about the functionality, there is no need for 
coordination, translation and interpretation of knowledge inside the delivery cycle. 
 
When applied to required changes, a refined set of examples is effectively a specification and a 
business-oriented test for acceptance of software functionality. After the change is implemented, 
specification with examples becomes a document explaining existing functionality. As the validation 
of such documents is automated, when they are validated frequently, such documents are a reliable 
source of information on business functionality of underlying software. 
 
The Three Amigos [AA2], also referred to as a "Specification Workshop", is a meeting where the 
Product Owner discusses the requirement in the form of SBE by Example with different stakeholders 
like the team members. The key goal for this discussion is to trigger conversation and identify any 
missing specifications. The discussion also gives a platform for the team and Product owner to 
converge and hear out each other's perspective to enrich the requirement and also make sure if they 
are building the right product. 
 
The three Amigos are 

¶ Business - Role of the Business user is to define the problem only (and not venture into 
suggesting any solution) 

¶ Development - Role of the Developers involve suggesting ways to fix the problem 

¶ Testing - Role of testers is to question the solution, bring up as many as different possibilities 
for brain storming through What-If scenarios and help make the solution more precise to fix 
the problem. 



AU Certified Practitioner in Agile Testing (CPAT) - Syllabus 

  

V - 1.02, released March 2020                                              Page 39 of 49 

 
Figure 9 

Refining the specification can be done with Example Mapping.[MW1] Example Mapping is a 
technique that can steer the conversation and derive Acceptance criteria within 30 minutes .The 
process involves breaking each stories into Rules and Examples and documented in the form of 
Specification by examples. 
 

 

Figure 10 

In order to make automation possible (which by itself is not the goal of SBE) you need to write down 

the specifications in an executable way. Gherkin [GH1] is the language that Cucumber uses to define 




















